Primeiras imagens do telescópio espacial Webb do planeta vermelho

Primeiras imagens do telescópio espacial Webb do planeta vermelho

As primeiras imagens de Marte de Webb, capturadas por seu instrumento NIRCam em 5 de setembro de 2022 [Guaranteed Time Observation Program 1415]. Esquerda: Mapa de referência do hemisfério observado de Marte da NASA e do Mars Orbiter Laser Altimeter (MOLA). Canto superior direito: imagem NIRCam mostrando luz solar refletida de 2,1 mícrons (filtro F212), revelando características da superfície, como crateras e camadas de poeira. Inferior direito: imagem simultânea do NIRCam mostrando luz emitida de ~4,3 mícrons (filtro F430M) que revela diferenças de temperatura com latitude e hora do dia, bem como escurecimento da Bacia de Hellas causado por efeitos atmosféricos. A área amarela brilhante está apenas no limite de saturação do detector. Crédito: NASA, ESA, CSA, STScI, equipe Mars JWST/GTO

Em 5 de setembro, Telescópio Espacial James Webb da NASA capturou suas primeiras imagens e espectros de[{” attribute=””>Mars. The powerful telescope provides a unique perspective with its infrared sensitivity on our neighboring planet, complementing data being collected by orbiters, rovers, and other telescopes. Webb is an international collaboration with ESA (European Space Agency) and CSA (Canadian Space Agency).

Webb’s unique observation post is nearly a million miles away from Earth at the Sun-Earth Lagrange point 2 (L2). It provides a view of Mars’ observable disk (the portion of the sunlit side that is facing the telescope). As a result, Webb can capture images and spectra with the spectral resolution needed to study short-term phenomena like dust storms, weather patterns, seasonal changes, and, in a single observation, processes that occur at different times (daytime, sunset, and nighttime) of a Martian day.

Because it is so close to Earth, the Red Planet is one of the brightest objects in the night sky in terms of both visible light (which human eyes can see) and the infrared light that Webb is designed to detect. This poses special challenges to the observatory, because it was built to detect the extremely faint light of the most distant galaxies in the universe. In fact, Webb’s instruments are so sensitive that without special observing techniques, the bright infrared light from Mars is blinding, causing a phenomenon known as “detector saturation.” Astronomers adjusted for Mars’ extreme brightness by measuring only some of the light that hit the detectors, using very short exposures, and applying special data analysis techniques.

Webb's Orbit

Webb orbits the Sun near the second Sun-Earth Lagrange point (L2), which lies approximately 1.5 million kilometers (1 million miles) from Earth on the far side of Earth from the Sun. Webb is not located precisely at L2, but moves in a halo orbit around L2 as it orbits the Sun. In this orbit, Webb can maintain a safe distance from the bright light of the Sun, Earth, and Moon, while also maintaining its position relative to Earth. Credit: STScI

Webb’s first images of Mars [top image on page]capturado pelo Câmera infravermelha próxima (NIRCam), mostram uma região do hemisfério oriental do planeta em dois comprimentos de onda diferentes, ou cores de luz infravermelha. Esta imagem mostra um mapa de referência de superfície de[{” attribute=””>NASA and the Mars Orbiter Laser Altimeter (MOLA) on the left, with the two Webb NIRCam instrument field of views overlaid. The near-infrared images from Webb are on shown on the right.

The NIRCam shorter-wavelength (2.1 microns) image [top right] é dominado pela luz solar refletida e, portanto, revela detalhes da superfície semelhantes aos aparentes nas imagens de luz visível [left]. Os anéis da Cratera Huygens, a rocha vulcânica escura de Syrtis Major e o brilho na Bacia de Hellas são todos aparentes nesta imagem.

A imagem de comprimento de onda mais longo (4,3 mícrons) do NIRCam [lower right] mostra a emissão térmica – luz emitida pelo planeta à medida que perde calor. O brilho da luz de 4,3 mícrons está relacionado à temperatura da superfície e da atmosfera. A região mais brilhante do planeta é onde o Sol está quase acima, porque geralmente é mais quente. O brilho diminui em direção às regiões polares, que recebem menos luz solar, e menos luz é emitida do hemisfério norte mais frio, que está passando pelo inverno nesta época do ano.

Telescópio Espacial James Webb L2

O Telescópio Espacial James Webb. Crédito: Goddard Space Flight Center da NASA

No entanto, a temperatura não é o único fator que afeta a quantidade de luz de 4,3 mícrons que atinge o Webb com este filtro. À medida que a luz emitida pelo planeta passa pela atmosfera de Marte, parte é absorvida pelo dióxido de carbono (CO2) moléculas. A Bacia de Hellas – que é a maior estrutura de impacto bem preservada em Marte, abrangendo mais de 2.000 quilômetros – parece mais escura do que os arredores por causa desse efeito.

“Na verdade, isso não é um efeito térmico em Hellas”, explicou o investigador principal, Geronimo Villanueva, da Centro de Voo Espacial Goddard da NASA, que projetou essas observações Webb. “A Bacia de Hellas é uma altitude mais baixa e, portanto, experimenta uma pressão atmosférica mais alta. Essa pressão mais alta leva a uma supressão da emissão térmica nessa faixa de comprimento de onda específica [4.1-4.4 microns] devido a um efeito chamado alargamento de pressão. Será muito interessante separar esses efeitos concorrentes nesses dados”.

Villanueva e sua equipe também lançaram o primeiro espectro infravermelho próximo de Webb de Marte, demonstrando o poder de Webb de estudar o Planeta Vermelho com espectroscopia.

Composição da Atmosfera Webb Mars

O primeiro espectro infravermelho próximo de Webb de Marte, capturado pelo Near-Infrared Spectrograph (NIRSpec) em 5 de setembro de 2022, como parte do Programa de Observação de Tempo Garantido 1415, em 3 grades de fenda (G140H, G235H, G395H). O espectro é dominado pela luz solar refletida em comprimentos de onda menores que 3 mícrons e emissão térmica em comprimentos de onda maiores. A análise preliminar revela que as quedas espectrais aparecem em comprimentos de onda específicos onde a luz é absorvida por moléculas na atmosfera de Marte, especificamente dióxido de carbono, monóxido de carbono e água. Outros detalhes revelam informações sobre poeira, nuvens e características da superfície. Ao construir um modelo de melhor ajuste do espectro, usando, por exemplo, o Gerador de Espectro Planetário, podem ser derivadas abundâncias de determinadas moléculas na atmosfera. Crédito: NASA, ESA, CSA, STScI, equipe Mars JWST/GTO

Enquanto as imagens mostram diferenças de brilho integradas em um grande número de comprimentos de onda de um lugar para outro do planeta em um determinado dia e hora, o espectro mostra as variações sutis de brilho entre centenas de diferentes comprimentos de onda representativos do planeta como um todo. Os astrônomos analisarão as características do espectro para coletar informações adicionais sobre a superfície e a atmosfera do planeta.

Este espectro infravermelho foi obtido combinando medições de todos os seis modos de espectroscopia de alta resolução do Webb’s Espectrógrafo de infravermelho próximo (NIRSpec). A análise preliminar do espectro mostra um rico conjunto de características espectrais que contêm informações sobre poeira, nuvens geladas, que tipo de rochas estão na superfície do planeta e a composição da atmosfera. As assinaturas espectrais – incluindo vales profundos conhecidos como características de absorção – de água, dióxido de carbono e monóxido de carbono são facilmente detectadas com o Webb. Os pesquisadores estão analisando os dados espectrais dessas observações e estão preparando um artigo que será submetido a uma revista científica para revisão e publicação por pares.

No futuro, a equipe de Marte usará essas imagens e dados espectroscópicos para explorar as diferenças regionais em todo o planeta e procurar gases-traço na atmosfera, incluindo metano e cloreto de hidrogênio.

tese Observações NIRCam e NIRSpec de Marte foram conduzidos como parte do programa de sistema solar de Observação de Tempo Garantido (GTO) do Ciclo 1 da Webb, liderado por Heidi Hammel da AURA.